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Less-than fully flexible polymer chains in solution are considered. Each chain is 
represented by relatively rigid and with relatively low pervaded volume group- 
ings of monomeric units called compact bundles, intercalated with extended 
bundles. A partition function for the system is constructed in terms of numbers 
of possible kinds of pairs of neighboring bundles, and of configurational 
energies. Results of the extremization of the partition function show an interplay 
of the interaction forces as decisive for the behavior of the system. The 
parameters characterizing the system are related to those in the Elory free- 
volume theory of liquids and solutions. The resulting equations enable evalua- 
tion of the relative concentration of compact bundles and of the numbers of 
pairs of neighboring bundles of different kinds. The model is related to some 
experimental evidence. Possible connections to structures of polymer-containing 
phases other than solutions are pointed out. 

KEY WORDS: Chain flexibility; macromolecular conformations; liquid 
state; polymer structure; free volume in solutions. 

1. FORMULATION OF THE PROBLEM 

Polymeric molecules in liquid phases are often grossly divided into rigid 
and flexible ones. There is, of course, growing interest in rigid polymers, 
including liquid crystals. On the other hand, we have the evident success of 
the assumption of complete flexibility. Quite a few properties of polymers 
in solutions can be explained in terms of the freely-jointed-chain model, 
which leads to a Gaussian distribution of segment densities. 

It is only natural to expect that the existing virtually unlimited variety 
of polymer solutions should provide us with a full range of possible 
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flexibility behavior of chains: from flexible via partially rigid to completely 
rigid ones. As with so many other aspects of polymer science, the first 
serious attack on the problem of partial flexibility is due to Flory. (l) He has 
noted that values of configurational dimensions of polymer molecules in 
dilute solutions are often about twice those calculated assuming free 
rotation about all single bonds. 

The present interest in the problem of semiflexibility stems from work 
on drag reduction (DR) and mechanical degradation in polymer solutions 
in flow (MDF). Given the practical importance of both these phenomena, a 
large body of experimental information about them has been accumulated, 
Attempts to rationalize this information in general have not been success- 
ful. Various approaches provide explanations for some aspects of DR and 
MDF, and then lead to conclusions in opposition to experimental facts for 
some other aspects. Important experimental findings have been called 
contrary to expectations or puzzling. This author has developed an ap- 
proach to DR and MDF, predictions from which are in agreement with the 
totality of experimental facts. (2) The model involves the assumption that a 
polymeric chain in solution contains groupings of monomeric units called 
compact bundles intercalated with other groupings called extended bundles. 
A compact bundle has relatively higher rigidity and, as its name suggests, 
pervades a relatively lower volume of the solvent than an extended bundle 
containing the same number of monomeric units. 

A word on terminology is immediately in order. The word "bundle" 
has already been used by Pechhold and collaboratorr 3) with an entirely 
different meaning. We are forced to appropriate this word, however, since 
the otherwise very rich English language does not seem to have enough 
words to describe a set of connected monomeric units within a chain. Quite 
a few meanings have been ascribed to the word "segment"; and words like 
"submolecule," "supersegment," or even "blob" have been used too. 
Moreover, Schelten and Stamm r have proven experimentally by diffuse 
neutron scattering in polyethylene melts that "bundles" as envisaged by 
Pechhold do not exist. 

The idea of concomitant existence of compact and extended bundles, 
developed within the framework of the study of drag reduction and 
mechanical degradation, has in fact already been implied by F!ory, He 
assumer o the existence of a favorable arrangement of consecutive seg- 
ments, the configurational free energy of which differs by an amount e 
from other possible arrangements. These other configurations, possibly 
different among themselves (E is apparently an average value) correspond 
to what we call the extended bundles. Flory points out that the stiffness of 
the chain is involved. He leaves open the question of the number of 
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monomeric units in an arrangement; the number clearly depends on the 
specific polymer and specific solvent, and similarly we do not ascribe any 
specific value to the average number of monomeric units in our bundle. 

Relevant for the applications mentioned above is the number Nce of 
pairs of nearest neighbor bundles such that one of them is compact and the 
other one extended; Ncc and Nee are defined similarly. Our partition 
function as defined below takes this explicitly into account. Also in distinc- 
tion to Flory, (1~ we do not place our chains and solvent molecules 
on a lattice. The liquid coordination number z, as determinable by 
diffractometry, is introduced, along with an internal coordination number 
~. The latter for polymeric molecules is related to local branching at a given 
segment. 

Extensive literature exists on the so'called helix-coil transitions in 
polypeptide chains. Basic work on this problem has been done by Rice and 
his colleagues, (5) and also by Zimm and Bragg; (6'7) current research 
represents essentially variations on their work. The transformation from a 
completely helical chain to a chain without helicity is a very sharp one. As 
noted by Zimm and Bragg, (7) a change of a few degrees in temperature or a 
few percent in solvent composition is sufficient to complete it. We know 
that many properties of polymeric chains are successively treated with the 
chain environment regarded as a continuum. (8) The stability of the helical 
structure in polypeptides in solution results from intramolecular hydrogen 
bonding; the solvent plays a subordinate role. Thus, the polypeptide chains 
represent a rather degenerate case of the behavior in which we are inter- 
ested. We are concerned with chains for which the transition from the 
completely compact state to the state without compact regions is a slow 
one, and passes through the entire gamut of possible intermediate states. 
For each such state, there exists a set of external conditions under which 
the state is a stable one. A slight perturbation of the conditions should 
result in a state close to the original one, rather than in a drastically 
different state. For our problem the polymer-solvent interactions are 
important. But, to assure a reasonable degree of generality, we have to take 
also into account the intramolecular interactions in the polymeric chain, 
and also the solvent-solvent interactions. 

The scope of the present paper is determined by the foregoing consid- 
erations. First, in Section 2, we construct a model of the polymeric chain, 
consisting of compact and extended bundles, and define quantities pertain- 
ing to it. In Section 3 we write the partition function for our system, and 
apply the usual methods of statistical mechanics. This necessarily brings us 
into the realm of thermodynamics; the importance of intermolecular inter- 
actions has been stressed already. Therefore, in Section 4 we make a 
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connection between the parameters characterizing our system and a very 
successful theory of the liquid state, developed by Flory. (9'1~ Since the 
aspects of chain conformations studied here are related to various proper- 
ties of polymeric materials, some such connections are discussed in Sec- 
tion 5. 

Consequences of our model are pursued in the following paper (~l) on 
the basis of numerical calculations; the results provide a number of checks 
of physical reality of our assumptions. 

It should be stressed that the present study does not constitute a 
negation of the homogeneous chain model. Many properties of polymer 
solutions are insensitive to the homogenei ty--or  otherwise--of the chains; 
we are studying here relatively subtle effects. At the same time, and as 
already noted, there exist polymer solution properties which cannot be 
explained if complete homogeneity is assumed. 

2. DEFINITIONS 

Consider a system of N 1 monomer plus N 2 polymer molecules. Each 
polymeric molecule contains r segments, and also consists of b bundles. 
Since the bundles are either compact or extended, we have, in obvious 
notation, 

bc + be = b (1) 

The terminology we have adopted shows that both kinds of bundles are on 
equal footing. As Rice and his colleagues (5) did in a similar situation, we 
assume that the number of segments r b in a compact bundle (akin to their 
"helical section") is the same as in an extended bundle. Therefore 

br  b = r (2) 

If bundles are not of the same length, and a distribution of bundle sizes 
exists, then r b is an average parameter. 

As noted in Section 1, we also characterize the polymeric chain from 
the point of view of kinds of pairs of neighboring bundles Nce, Ncc , and 
Nee. For instance, denoting each compact bundle by c and each extended 
one by e, in the sequence 

ccceeeeecc  (3) 

we have b = 10, b c = 6, Nce ~ 2, Ncc ~- 4, and Nee = 3. 

Since the maximum number of partitions in a row of m objects is 
m - 1, we have 

Nec + Nee + N e e = b -  l~--~b (4) 
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Neglecting again unity for sufficiently long chains, we have also 

2Ncc + N c e  = 2 b  c (5a) 
2Nee + Nee = 2b e (5b) 

It will be convenient at some stages to use fractions xce defined by 

Nee Nee 
x~e - Ue ~ + N~ e - be + (No j 2 )  (6) 

The system is characterized by a coordination number z; among other 
things, this takes care of the excluded volume problem. In general, z 
depends on temperature and density; ~2'13~ it is obtainable from diffrac- 
tometric measurements via an integration of the pair radial distribution 
function g ( R ) .  Thus, each polymer segment has z nearest neighbors, and so 
has each monomer molecule. We denote by ~ the number of nearest 
neighbor sites which are occupied by segments directly connected to a 
given segment. Thus, in a chain without branches and without cycles, 
disregarding the end-of-chain effects, the average value of ~ for the chain is 
2. At a segment at which branching occurs, where we have, say, ~ = 4, there 
are also two values of ~ = 1 at the end of the two branches, and the average 
of ~ = 2 is preserved. On the other hand, in molecules containing cycles, an 
average value for the chain of ~ > 2 will be obtained. 

According to our definitions, each polymer segment has z - ~ external 
nearest neighbors with which it interacts. Consider a segment in a compact 
bundle surrounded by compact bundles. Denote by (z - ~)Pm the average 
number of interactions with other polymer segments (nonnearest neighbors 
in the same chain or in other chains). The remainder, that is (z - ~)(1 - 
I'm), is the number of interacting pairs of our segment with its nearest 
neighbor solvent molecules. Take now a segment in a compact bundle 
surrounded by extended bundles. Such a segment is also an average 
representative, since in a compact bundle we might have half of the 
segments adjacent to an extended bundle and another half adjacent to a 
compact bundle. (The procedure we use is equivalent to breaking all 
compact bundles into halves, and then reassembling the halves adjacent to 
other compact bundles separately from the halves adjacent to extended 
bundles.) Now we denote by (z - ~)Pt the average numbers of interactions 
of such a segment with other polymer segments (indexes m and t denote 
"middle" and "terminal," since we are dealing with location in a string of 
compact bundles). Analogously, for a segment in an extended bundle we 
denote by (z - ~)Pe the average number of interactions with other polymer 
segments. 

The parameters I'm, Pt, and I'e are of importance for solutions other 
than highly dilute. Another polymeric chain might then touch a bundle 
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under consideration. Also, in view of entanglements, another bundle from 
the same macromolecule might touch a given bundle. 

If the polymer concentration in solution is not very high, all z - 
external interactions of a segment in an extended bundle are directed 
towards solvent molecules, and characterization of such segments in terms 
of a ~'e parameter is not necessary. Since our treatment is not significantly 
affected by specific values of u-type parameters, for the time being we shall 
confine ourselves to the simpler version with ~e = 0. Thus, the definitions of 
~, ~m and ut given about complete the specification of the polymer chain 
structure. 

We now pass to interactions of monomer molecules and of polymeric 
segments. There are three types of them: 1-1, 1-2, and 2-2. In agreement 
with Flory (9'1~ we define the average interaction energy Uyy, per pair y - y '  
by 

uyy, = - ~lyy,l v (7) 

where v is the segment volume. Except for a very improbable case of a 
pressure so high that the repulsion is dominant, ~yy, represents an attractive 
interaction. Therefore, uy/ is  a positive quantity. 

3. C O N S T R U C T I O N  OF THE MODEL 

For the partition function of our liquid system we being with the 
function constructed by Flory. (9'1~ For simplicity, instead of the entire 
system, we shall now study a subsystem containing one polymer molecule 
plus its share of N 1 / N  2 monomer molecules. The partition function of the 
subsystem has the same form as that for the entire system, O'l~ that is, 

Q = Q COmbQf~Q~ (8) 

The combinatorial factor Q comb is related to the fraction of the three- 
dimensional space taken by polymeric chains and the other part taken by 
the solvent and is independent of the compactness (or otherwise) of the 
chain. The free volume factor Qf~ depends on the experimental values of 
molar volume V (or segmental volume v), of isobaric expansivity a, and of 
isothermal compressibility ~T" We shall now concentrate on the configura- 
tional (or interactional, or potential energy) factor Q C. We make summa- 
tion of all possible kinds of interactions in the subsystem, and express the 
respective energies in terms of the parameters defined in the preceding 
section. We also note that there is a certain number of ways, call it f~, of 
realizing a configuration with a prescribed number bc of compact bundles 
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and with b e extended bundles. The result is 

QC= bc,be,NceE f~exp{ %'--~fl - [  N'z~-------'2~ + rb( z -  2 

The first term in the exponential expression represents solvent-solvent 
interactions, the second interactions of middle compact bundles (sur- 
rounded by other compact bundles) with solvent molecules, and so on. The 
parameter fi = (kT) -1, where k is the Boltzmann constant and T the 
thermodynamic temperature. For a given relative mass (molecular weight) 
M of the polymer, the value of b is fixed. Equation (9) contains then two 
variables, such as b c and Nee. The latter is related to X~e via Equation (6); 
we have written (9) in terms of xce for brevity. 

Consider now the factor f~. A bundle is either compact or extended. 
Clearly, the problem treated first by Ernst Ising at Hamburg University in 
his Ph.D. thesis on ferromagnetism (14~ resurfaces here once more: we have 
a set such that its elements can occur in one of two possible states. Our 
chain is a quasi-one-dimensional entity. Rothstein (iS) has analyzed on the 
quadratic lattice configurations of model chains (beads and rigid links, with 
links meeting at a bead at 90 ~ and 180~ He has found that the set of chain 
configurations splits up into mutually inaccessible families. No such split- 
ting has been found in one dimension, so the fact that our problem can be 
treated in one dimension is an advantage. From combinatorics we have 

b fl b fl 
= (be _ Xce/2)] ( b e _  Nce/2)! [(Nce/2)!]  2 (10) 

We can now apply the usual procedures of statistical mechanics (or of 
information theory): the maximum term Q~mo~ of Q~ is taken; the Stirling 
approximation is introduced into (10); then two extremizations are per- 
formed, one by differentiation with respect to bc, treating Nc~ and the 
remaining parameters constant, the other vice versa: 

(~lnQ~b~ .... )N c~ = 0  ( l la)  

(~lnQ~m"x) - 0  ( l lb)  
ONce b~ 
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The results are 

bc(b - bc - N~e/2 ) f l ( z  - ~ )r  b 
In + 

(b - be)(b c - Nee~2 ) 2v 

X v m - -  2 ( V  m - -  Pt) bc + ( N c e / 2 )  ('qll + ~22 -- 27]12) = 0 (12) 

(b~ - Nee/2) (b  - b c - N~e/2 ) 
In 

(Nce/2)  2 

+ flrbV ( Z - - f ) ( v  m - v t )  b ~ + N c e / 2  (7]'' +7122-27112)=0 (13) 

We note that 27112, 711t, and 7]22, which had different factors in (9), now 
have identical factors. Equations (12) and (13) contain the same two 
unknowns, b~ and Nee. The equations are not explicit in the unknowns, and 
numerical solutions of this pair of equations are reported in Part 211 for 
various energy terms 7111 + 7]22 - -  27112" 

The factors featuring in the logarithmic terms in Equations (12) and 
(13) can be related t o  Nee and Nee via Equations (5). The substitution leads 
to a certain improvement in perspicuity, for Equation (13) in particular. 
The results are 

bcNee _ f l (z  - ~)r  b - 2(v., - vt) be + 
In beNe e 2v v,,, N~e/2 

• (7],1 + 7]22 - 27112) (14) 

In 4NccNee _ f l ( Z - - ~ ) ( V m - - V t ) r b (  bc )2 
Nc2e v b~ + Nee~2 (7111 3r" 7]22 27112) 

(15) 

Before we discuss various consequences of (14) and (15), let us make a 
simple comparison. The classical and widely used quasichemical formula of 
Guggenheim O6'17) can be written in our notation as 

4NccNee fl 
In - -  - (7111 + 7]22 -- 27112) (16) 

Ng2e v 

Thus, (16) is a simplified version of (15); certain factors absent from (16) 
have been introduced in the derivation of (15). 
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Interesting simulation of simple chains (n-alkanes, that is snakes from 
the point of view of graph theorists) was made by Khalatur. (18~ He has 
generated the chains according to the procedure of Yoon and Flory (19) by 
the Monte Carlo method. The polymer-polymer interaction parameter, 
corresponding to our 722, was varied. An increase of 722 has produced a 
distinct decrease in volume pervaded by each chain. As noted by Khalatur, 
similar results have been reported earlier by Dashevskii. (2~ Now, Eq. (15) 
implies that an increase in 722 should produce higher values of N~c. It 
follows from the definition that an increase in N~ has to be accompanied 
by a decrease in pervaded volume. If b~ > b/2, simultaneously N~e be- 
comes smaller; thus the sharp effect observed by Khalatur. We find that 
various approaches lead to the same mutually coherent picture. We shall 
consider more in detail the effect of interaction energies (and of tempera- 
ture) upon macromolecular sizes in Part II. (~1) Before, however, discussing 
various other consequences of the present model we shall provide the 
necessary connection to the Flory theory of liquids and solutions in the 
following section. 

4. THERMODYNAMICS OF SOLUTIONS 

The theory of equilibrium properties of liquids and solutions developed 
by Flory (9) gives by far the best agreement with the experimental results. 
There exists considerable literature on the theory. Among other things, the 
theory has been satisfactorily extended to liquid metals and to binary liquid 
alloys. (21) Further, it has been extended to ternary mixtures, (22) and very 
good results obtained for a system of organic liquids, a system of con- 
densed gases, and also for liquid metal alloys. Given the virtual universality 
of the theory, we had on purpose used the Flory partition function, Eq. (8), 
to represent our system. Subsequently, the configurational factor Q c was 
represented in terms of special parameters characterizing compact and 
extended bundles of the polymeric chain, w e  shall now provide the 
connection between these parameters, and the standard parameters used to 
represent the Q c term. 

First, we write the configurational energy U c for the system [cf. Eq. 
(7)] as 

- -  U C t )  = NllTI 1 -4- N22722 + N12712 (17) 

where Nyy represents the number of interacting pairs y-y'. The configura- 
tional energy of the subsystem considered in the preceding section is 
UC/N2. Flory (9) has introduced a parameter s which is a measure of the 
interacting surface area, namely, sy is the number of interaction contact 
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sites per y-type segment. Parameters s 1 and s 2 are related to Nyy, s by (9) 

N l s  1 = 2N11 + N22 (18a) 

Nzrs  2 = 2N22 + N12 (18b) 

Since r I -- 1 in our system, the r 1 factor has been omitted in the left-hand 
side of Eq. (18a), and the subscript has been dropped from r 2. Equations 
(18) have the same form as Eqs. (5). From the substitution of (18) into (17) 
we have 

. . 7/11 . . ~/22 Th2 
- U c = ( W , s ,  - lV'z) 2-vv + (Nzrs2  - Iv'2) -~v + N '2 - - v  (19) 

On the other hand, in terms of the treatment of compact and extended 
bundles in the preceding section [cf. the exponential term in Eq. (9)], we 
have 

_ U c = ( N ] z -  N12 ) 

+ U 2 r b ( z  - : ) b e [ ( 1  - Xce)"m + 
2v 

+ N 2 r b ( z  - -  ~ ' ) [ b ~ [ ( l  - X~e)(l - "m) + Xce( 1 - t ' , ) ]  + be] ~/,___22 
t)  

(20 )  

By comparison of the respective right-hand side term of (19) and (20) we 
have first 

s I = z (21) 

Further, on the basis of the random mixing approximation, (9) N12 in (19) is 
given by 

N 1 N 2 r s l s  2 

N12 - N l s l  + N2rs 2 (22) 

Therefore, introducing the symbol f for 

f =  r b ( z  - -  ~ )  - -  [ b ~ [ ( l  - xce)( l  - urn) + xce(a - p,) + be] (23)  

we have 

fN1z 
s 2 -- r ( N 1 Z  _fN2 ) (24) 

Since the partition function of our system has been cast in the Flory 
form of Eq. (8), Eqs. (21) and (24) assure the complete compatibility of our 
treatment with the Flory theory of the liquid state. 
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In calculations based on the Flory theory, several approaches to the s 
parameters have been used. One consists ~23) in putting s 1 = s 2 = 1, obvi- 
ously a crude assumption. Another consists in treating the ratio s 2 / s  1 as an 
adjustable parameter, together with an energetic parameter such as 1/11 + 
1/22- 21/12" A third possibility consists in the use of group surface area 
schemes, such as the Bondi scheme. (24) As noted by Eichinger and Flory (25) 
the group schemes tend to overestimate the S z / S  1 ratio. Considerable 
overestimates have been found in calculations for a series of systems of 
natural rubber with organic solvents. (26) 

Return now to one of the two extreme cases with which we have 
started this paper: the "ideal" fully extended quasilinear chain. For such a 
chain the parameters 1, m and v t are zeros by definition, in Eq. (23) we have 
b e = b, and f acquires its "ideal" or maximum value, namely, (z - ~)r [see 
Eq. (2)]. In a real system, the more compact it is, the smaller the corre- 
sponding value of f .  For a given z, a decrease in f produces a decrease in 
s2; this at a rate faster than linear, since simultaneously the numerator is 
decreasing and the denominator is increasing. Thus, any scheme which 
does not take into account the compactness of parts of the polymeric chain 
has necessarily to overes t imate  the s2/s~ raticr--as indeed is observed. 

5, D I S C U S S I O N  

For simplicity we have considered a monodispersive system. General- 
ization of the present theory to polydispersive systems is possible. Alterna- 

tively, the present equations are applicable to polydispersive systems as 
they stand, only some of the quantities become averages over distributions 
of molecular masses. 

The model discussed does not take special cognizance of chain en- 
tanglements, except for the fact that values of the parameters Pro, Pt, and Pe 
are affected by them. A detailed treatment of entanglements can be 
developed in terms of knots and linkages, as proposed by Frank- 
Kamenetskii and his colleagues, ~27'28) and discussed in Chapter 9 of 
Ref. 29. 

There is no reason why a relationship between chain conformation, 
rigidity, and thermodynamic properties should be limited to very long 
chains. Interesting properties of oligomeric molecules of alkynes have been 
pointed out by Kehiaian, ~3~ and enthalpies of mixing H E of 1 - h e x y n e  
and 3-hexyne with some hydrocarbons have been measured by Wilhelm, 
Inglese, Grolier, and Kehiaian. ~31) As noted in Ref. 31, 3-hexyne is a more 
rigid molecule that 1-hexyne; multiple bonds result in larger rigidity, and in 
1-hexyne the remainder of the molecule constitutes a relatively flexible tail. 
At 298.15 K 1-hexyne has the volume V = 115.44 cm 3 tool-l ,  enthalpy of 
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vaporization H vap= 32.10 kJmol-1. The respective values for 3-hexyne are 
V =  114.16 cm3mo1-1 and Hvap=34.99 kJmo[ -1. The normal boiling 
points of these hydrocarbons are, in the same order, T b = 344.5 K and 
T b = 354.6 K. Wilhelm et al. (31) point out the importance of geometrical 
packing in determining the thermodynamic properties. Let us assume that 
the intersegmental interactions in both hydrocarbons are comparable. More 
efficient packing in 3-hexyne should produce shorter average interseg- 
mental distances, and thus [see an interaction potential u(R)  curve, such as 
in Fig. 4.2.1 in Ref. 29) larger absolute values of the configurationat energy 
U c. Consequently, 3-hexyne should have smaller molar volume, higher 
vaporization enthalpy, and higher normal boiling point than 1-hexyne--as 
indeed is observed. 

Wilhelm, Inglese, Grolier, and Kehiaian (31) have analyzed their experi- 
mental enthalpies of mixing H e by calculating the contribution of orienta- 
tional forces to the Helmholtz excess function of mixing A E from the 
equation of Pople (32) in terms of dipole moments. The resulting values are 
quite small, so the main contribution to H E has to be of a different origin. 
We note that in all cases H E values obtained by Wilhlem et. al. (30 for a 
given hydrocarbon with 1-hexyne are higher than for the same hydrocar- 
bon with 3-hexyne. An explanation of the same kind as given above for 
pure alkynes is applicable. Addition of 1-hexyne to a given hydrocarbon 
produces a structure which is less compact than if more rigid 3-hexyne is 
added. Consequently, in binary mixtures containing 1-hexyne we have 
larger average intersegmental distances R and less negative (smaller abso- 
lute values) pair interaction energies u(R).  The total configurational energy 
U c is also less negative, and we have H E (1-hexyne mixtures)> H E 
(3-hexyne mixtures). Again, our approach predicts correctly the observed 
behavior. 

Consider now briefly connections of the present structural model, if 
any, to structures of polymer-containing phases other than solutions: melts, 
amorphous solids, and crystals. As for melts, Schelten and Stamm (4) have 
found small but distinct differences between the pair radial distribution 
functions of polyethylene and n-hexatriacontane. They note deviations of 
the experimental scattering functions from the respective Debye functions. 
These differences have been already explained by Yoon and Flory (33) in 
terms of configurational geometry. Of course, our model of chains in 
solution represents an attempt to seize the geometry in a relatively simple 
way. Interesting also in the present context is that in 1945 Charlesby (34~ 
had pointed out the existence of what he called the memory effect in 
polyethylene films: conservation of orientation even after prolonged heat- 
ing above the melting point. Much later, Kamel and Charlesby (3~-37) 
reported pulsed NMR spin-spin relaxation (T2) spectra for solid and 
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molten polymers, including copolymers. (36) Their results became available 
when the work described in this paper was already in progress. Kamel and 
Charlesby have found three components in the spectra of the melts: one 
(relatively small) called TzL represents relatively short and highly mobile 
chains, which are sometimes present; a second called T2s corresponds to 
what had been the amorphous component before melting; the third compo- 
nent called T2x represents relatively dense well-packed regions resulting 
from melting of crystalline domains. Concentrations of the components 
were determined. It is tempting to transfer our model of chains in solution 
to melts, and identify the main components of the spectra: T2x with 
compact bundles and T2s with extended bundles. One would then say that 
Kamel and Charlesby have determined the average bc/b values for their 
polymers. 

As for solid amorphous polymers, quite a variety of conformational 
models have been proposed, as reviewed for instance by Przygocki. (3s) 
Most of these models, including the meander model of Pechhold, (3) involve 
strongly exaggerated notions of the extent of order reigning in amorphous 
polymers. Fischer and Dettenmaier (39) have reviewed the experimental data 
and found no support for long-range-order models such as the meander 
model. Further, a careful analysis of all the pertinent experimental evidence 
has led Flory (4~ to the conclusion that only very short-range correlations 
of the axes of neighboring chain sequences exist. 

In semicrystalline polymers we have again the parentage relationship 
to our model already discussed for melts, with crystalline stems related to 
compact bundles. A considerable literature has been devoted to the discus- 
sion of adjacent vs. nonadjacent reentry of a macromolecule chain into the 
same crystalline lamella during solidification. Of course, the supposedly 
turning around crystalline stem does not correspond to any structure in any 
phase discussed (or mentioned) in this paper. In his Concluding Observa- 
tions at a Farady Discussion, Flory (41) has expressed the hope that rational- 
ity may eventually prevail in this area. There are, however, still attempts to 
justify adjacent reentry with various more or less specious arguments. It has 
to be said that adjacent reentry occurring repeatedly cannot be reconciled 
with the physics of polymeric chains, in particular because of the existence 
of excluded volume of each stem emerging from the crystalline part. At the 
same time, such reentry would violate everything the theory of information 
has taught US. (42-46) AS discussed elsewhere (Refs. 43, 44, 46 and Chapter 3 
of Ref. 29), statistical mechanics is a consequence of the theory of informa- 
tion. Thus, an important part of polymer science would lose its firm basis at 
the same time; only a tenuous connection to semiergodicity would remain. 

Macromolecules in general have branches, and branching of polyethyl- 
ene has been studied by Rueda, Balta Calleja, and Hidalgo (47~ with x-ray 
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diffractometry and IR spectroscopy. The Madrid group has concluded ~47) 
that structures of low-density polyethylene can only be explained by 
interruptions of crystalline lamellae by amorphous regions. But let us for 
simplicity confine ourselves to chains without branches. For every polymer 
crystallization process, fully adjacent reentry would require the existence of 
a large number of Adjacent Reentry Demons, somewhat similar in their 
operation to the Maxwell Demon. Each of the Demons would have to 
scrutinize incoming candidates (that is: polymeric chains) and send back 
into the amorphous oblivion all chains but the "right" one. An appeal to 
rationality is worth making when deciding whether such demons exist. 

Finally, let us return to polymer solutions. The existence of bundles of 
the two kinds is compatible with the presence of twists and entanglements. 
It is also compatible with the usual Gaussian statistics. Electron microscopy 
studies of Aharoni (48-51) show that a polymeric chain consists of regions of 
high density separated by regions of lower segmental density. This has been 
found in amorphous materials produced by forced and very fast drying of 
solutions, such that the polymer structure characteristic for solutions has 
been preserved. The instantaneous shape and segmental density of individ- 
ual chain molecules are neither symmetrical nor Gaussian. However, both 
the shape and segmental density become spherical and Gaussian when an 
average is taken over all angles and/or  a large population of molecules. 
The usefulness of direct studies of individual polymeric chains has already 
been stressed elsewhere (Chap. 9 of Ref. 29). The high- and low-density 
regions observed by Aharoni provide a direct experimental confirmation of 
our model of compact and extended bundles in a polymeric chain. 
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